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Abstract

Je list eleven research papers written under the

Grant, of which five have been published in scientific

periodicals, three have been accepted for publication and

three have been submitted and under consideration. This

year I report that we find a good approximation to the number

of non-separable sparsely-edged labelled graphs, relevant

to ajplications in statistical mechanics. I also study the

enumeration of sm oth labelled graphs, where I obtain

an exact form for the exponential generating function,

find the differential equation it satisfies and a combinatorial

interpretation of this equation and finally study the

sparsely edged case. i remark on a surprisingly close

relationship between the results for the sparsely edged

case of the non-separable and the smooth graphs. I reort

a little further on the enumeration of bipartite graphs,

labelled and unlabelled, and finally list a fe%.' of the

further problems that i hope to investigate.
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The number of larre non-serar-ble labelleu_rp

1. An (n,q) graph is a graph on n labelled

points and q lines. A non-separable graph (or block)

is a connected graph which cannot be disconnected by

the removal of one point and its adjacent lines. .e

,:rite u(n,q) for the number of non-separaLle graphs

on n labelled points and q lines and are concerned to

find an asymptotic approximation to u(n,n+k) as n -oo

and k--vo with k = o(n ). The determination of such

an approximation is related to problems in statistical

mechanics (see [,3,[B61, esp. p.141, and C31).
.e write

U u(n,n+k)Xn/nl

for the exponential generating function (e.g.f."

of u(n,n+k). In [B13] I found a recurrence differe:-tial

eauation -*hich enabled one, in t-eory, to determine

Uk for successive k. The worL could be carried out on

a computer and would give one the coefficients in the

expression

Uk = b+ 0-3k - ck#-3k+1 + 2 cks S,

here q6= I-X. IKence one could find an expression

for u(n,n+k)/n! in terms of binomial coefficients.

.ut this expression contains 3k+3 terms and the exact

evaluation of the coefficients rapidly e hausts the memuory

of the computer, so this procedure is not practicable

for any but small k, nor would the result be very-

informative for such k. 'However I can use the

recurrenec differential equation first to prove t-:at

5



-3 0 E3icnI [b], -3kn (1)

,ihhere [in denotes the coefficient of r /n! in the

power series F, and secondly to find recurrence formulae

for the sequences [bk3 and *Ck. ie can use these to

stow that ck = (3k+1)kbk/(3k-1) and so that, for k> 2,

bk(n+3k-2)!(n-3k 2+2k-1) (3k-1)!u(n,n+k)

bk(n+3k-1)! (1.2)

Je can transform the recurrence satisfied by the

sequence [bk into a particular case of the quadratic

recurrence studied by Stein and Everett [B51 and solved
by me LA3J. Iy solution leads to the result that

bk, a(3/2)k(k-l)! (1.3)

as k --)c , where a1 = 0.058538... (the value of a1
obtained by computing, using a theorem of (A33 to make

the work manageable). de have then

u(n,n+k)^ a1(3/2)k(!c-1)!(n+3k-1)!/(3k-1)! (1.4)

as n,k-- o with k = o(n4 ). From this, using
Stirling's formula, we can deduce that

u(n,n+k) --a1 (6 7r)nn+3k--e2k-n(lk2)-k .  (1.5)
The inequalities (1.2), very precise for k = o(n'),

give some round for optimism over their use in the
applications mentioned above.

;e can o a little further and show that, if

k<(1- L)( n)#,w-ere E is a positive number

independent of k and n, then log u(n,n+k) has

the asymptotic approximation corresponding to (1.5)
with error 0(l).

6



The details o- this work are embodied in

Appendix 1 of this report, which is a paver EA9I
w-iich has been submitted for possible publication
in the Journal of Graph Theory.
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,numeration of smooth labelled graphs

2. This section is an expansion of 45 of the .econd

Annual ieport, containing further results. The full

details are in Appendix 2, which is a paper Chi0o

submitted for possible publication to the Proceedings

of the 2oyal Society of :Sdinburgh.

A smooth graph is a connected graph without

end points. Let v(n,q) be the number of smooth labelled

(n,q) graphs. The e.g.f. of v(n,q) is

V(ZY) = v(n,q)Znyq/n!

-y the core and mantle mthod due to liddell and to

!ord and Ulilenbeck (see [B3]), I find the functional

equation satisfied by V. In this case, unlike other

applications of the method, the inverse of the auxiliary

e.g.f. introduced can be expressed in simple terms and

so i find an explicit form for V, namely

V(z,Y) = loll1 + . zne-n Y(+Y)-,n(n-1)} - +

7rom this I can find a partial diiferential equation

(p.d.e.) satisfied by V, namely

2(1-Zy) 3 (I+Y)Vy = Z2(1-Y)(V+V

+ Z3 2 (3-2ZY)Vz + z3y 2 (1-Zy) 2

I can also find a direct cobinatorial proof (or, one

might say, a combinatorial interpretation) of the p.d.e.

I give this in full in Appendix 2. Again, if we write

V ~VY
k,-O

8
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'a ere
Vk.. -- . v(n,n+k)(ZY)n in ',

,.,;e can find The differential recurrence formula for Vk

as k increases.

,I nunber of asymptotic results follow, for v(n,q).

.,e write

(/n) - o log n - log log n.

if c as n , we can deduce trivially from the

work of Erdos and .enyi [D2] that the pro-.ortion of

labelled (n,q) Zraphs whic> are smooth tends to

exp(-e - 2 c ) as n- . If we--> , ",a can a-ply the

method of [B8] to the explicit form of V(Z,Y) above

so as to find an asymptotic expansion for v(n,q) and

so also for .h3 relatively small number of (n,r ) graphs
w-.ich are not smiooth for these q. See Theorem 4 of _

Appendix 2. This result can also be found, but with

rather more difficulty, by the use of the

Inclusion-zxclusion Theorem.

-'inally I can apply the method of [A41 (almost

word for word, if I replace G b 1-X) to the recurrence

formula for Vk to find an a-ymptotic approximation to

v(n,n+k) if k = o(n2') as n -- , viz.

v(n,n+k) -%j b" (n+3k-1 ) !/(3k-1 ) !
(In Appendix 2, we write b,., but, to avoid confusion

with Appendix 1, I use bi here). '.ie find that
k,

b-' , d(3/2)-(:-1) (2.1)



as k-4oD, where d =0.159155 ... hence

and

v(n,n+k)rv d(61r) n l 3 e(18k )k(2.3)

as k,n-4C0o with k o(n.

1 .0



A comparison of these results

3. It follows easily from Erdos and Renyi's

work in (B23 that, if p-- + cD as n -4 , then

v(n,q)_u(n,q),vK.!/ q!(K-q)! ,

where N = n(n-1), i.e. almost all labelled (n,q) graphs

are non-separable and smooth. It is easy to see from

(B2J how this happens. If, on the contrary, we consider

v(n,n+k) and u(n,n+k) when k-4c with n but k = o(n ),

we have, from (1.4) and (2.2),

v(n,n+k)/u(n,n+C)- bk/b k--d/a1 = 2.71883... (3.1)

This is puzzling. The sequences fbk and fbkl are

defined by the recurrences

2(k+l)bk+ I = 3+( +3)b B+-, (3.2)

where b;= 5/24, b = 5/16 and
=s(k-S)bsb .,-s

and by

2(k+1)bk+l = (3k+2)(kbk+3Bk.,

where b1 = 1/12,B 2 = 5/48 and

Bk = s(k-s)bsb;_s

These recurrences look similar and they have the very

similar asymptotic solutions (1.3) and (2.1). But it

does not seem possible to transform one into the

other nor even to obtain any relation between them,

11

(i



The two pa:-ers 91 andLA0 were drafted at

different times of the year and the two recurrences

(3.2) and (3.3) were solved asymptotically in very

different ways (see (A3] and [A7]). Thus the close

similarity between (1.4) and (2.2) did not strike me

until I started collecting material for this report.

A further point which only struck me while I was

actually writing the report is that the number 2.71883...

in (3.1) is very nearly equal to e = 2.71828..., the

base of Napierian logarithms (in fact, it only differs

by 2 parts in 10000). The obvious conjecture is that

there has been a minor error in calculating d or a1

and that the ratio should be exactly e.

I have made no reference to all this in [A93 and

EA10O (Appendices 1 and 2) since, at present, I do not

understand it. It seems vf-V unlikely that it is no more

than a coincidence that v(n,n+k) and u(n,n+k) have

such similar asymptotic approximations and these in a

constant ratio (probably e) to one another. Clearly we

must recalculate d and a1 (though we had certainly

checked th calculations very carefully). But the

relationship between v(n,n+k) and u(n,n+k) for this

range of k is more intriguing.

12



Bipartite graphs

4. The referee for my paper [A6] first reported

that "most of the results were contained in stron-er

ones proved by Bollobas in a paper to be published in

the Canadian J. Ilath". Dr. Bollobas was kind enough to

let me have a preprint of his paper, when it turned out

that the overlap between his results and mine was very

small (and in this small overlap, amusingly enough, my

proof was under wider conditions). He had a beautiful

theorem which I had not, namely, an asympto:ic formula

for the connectivity of almost all bipartite graphs on

m labelled red and n labelled blue points when m/n is

b-unded above and from zero below as ,,n-->

in fact, his result also covers multipartites. On the

other hand, the main interest of my paper was in

unlabelled g-raphs and included the case when m/n- 0,

neit :er of which did he touch. (The referee was

presumably relying on his memory of Bollobas's pa.er.)

'hen I 1'ointed out these differences, t,,e referee

reco.mended my paper for publication and it has been

accepted.A revised form wrich refers to Bollobas and

includes a further minor result appears as Appendix 3

of this report.

The further result is that, if = (m,n) is

the proportion of (m,n) bipartites which are connected,

then (i) if n2-m-4 w as m,n-oo with m< n, then

o-4 e-w and (ii) if n2-m co , then o--> 0. Dr.

Bolloba's says that he knows this result and that he

13



thinks he has seen a published proof by somebody.

A conjecture which suggests itself to me and which see.,s

likely, but whlich I cannot yet prove, is as follows.

If m< n, then o( increases with m and decreases as n

increases.

Professor Erdos infori,,ed me that I.Ialasti had

written on connectedness in bipartites. Her paper [B4]

proves the following (in my notation). Let m/n-4A as

n-w , where O<A$1 and let 3 =n log n + cnJ.

Then the proportion of labelled (m,n;E) bipartites
1,hich are connected tends to exp(-ge-c), where g = 1

if A 4 l and g = 2 if A = 1. This can be deduced
quite simply a-: a special case of our result from LA71
stated in Theorem 6 of Appendix 3. Our theorem also

makes the apparent "discontinuity" of g when m = n

less surprising.

To me the most interesting (and the most

difficult) problems in the enumeration of bipartite

graphs remain those which occur in the unlabelled

case ana especially when m/n-4O as m,n- c .

I have worked on these this year and think that I begin

to see daylight, but my results are as yet too franiaentary

to be worth reporting. They give some indication

already, however, that phenomena may occur as interesting

and as surprising as in the case of ordinary random

graphs (see, for example, LB9,B10,B11,B12,A1J).

I t14



Some further problems

5.1. I am actively engag-ed in investigating the

problems mentioned at the ends of §3 and §4.

5.2. I still have to write up for pblication

(if possible in a simplified form) the proof of my

results on the behaviour of ( (n,q), the proportion of

unlabelled graphs on n points and q lines which are

connected, as q increases. These results were announced

in [B9,BIOJ; both the nature o. the results and the fact

that so much can be found are surprising. Eut the methods

are elaborate and the details complicated.

5.3. Dr. jheehan and I have not yet found time

to apply further our use of the idea of a "ghost"

asymptotic expansion nor indeed to publish an account

of the method.

.V.4,. There remain the possible applications of

the result of §1 to a proble, in Statistical mechanics.

15
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Appendix 1

'-he number of co nected s-3arsely-ed ed -raps IV
.rge non-se ar-.ble :,raphs.

E.M. Wright

University of Aberdeen

(Submitted to J. Graph Theory)

Abstract

Th- nir.ber of non-,,parable :,rap's on n la'Lelled

points and q lines is un, j). In th2- ccond parer of

this series I showed how to find an ex..ct formula for

u(n,n+k) for general n and successive (small) k. The

method would -,ive an asymptotic aplproximation for fixed k

as n--*,Po. lere I find an asymptotic approximation to

u(n,n+k) when k = o(n 1 / 2 ) and an a proximation to

lo- u(n,n+k) when k <(1- &)1(n/3). The problem of findin:

an approximation to u(n,q) when (q-n)/n 1 /2--4 .00 and

(q/n) - log n - log log n --- - W is open.

16



Introduction

1. An (n,q) graph is a simple graph on n

labelled points and q lines (no loops, no multiple lines'.

3uch a Zraph is said to be non-separable (or a block or

-2-coed) if it is connected and cannot be disconnected

b- the removal of any one point an. its adjacent lines.

'Ie write u(n,q) for the number of non-separable (nq)

<raphs. The determinationo u(n,q) and, in particular,

of an asymptotic s:tpprxirAation for largealmost equal

n and q is related to problems in statistical -echanics

(see L11,L4,esp. p.141] and 5).

i;e put = (q/n) - 1 loL n - log lof' n. 3rdos

and Henyi E2] proved that, if t-- c ao n-40 00,

where c ig a fixed number, then the proportion of (n,q)

g-raphs which are non-separable tends to exp(-e-2C).

It can readily be showm tiat, for fixed n, the proportion

increases (at least in the non-strict sense) with q. Hence,

if t -- + , almost all (n,q) graphs are 2-connected,

While, if -t4 -O , almost none are 2-connected.

It is trivial that u(n,q) = 0 if q< n-1. Again

u(2,1) = 1, but u(nn-1) = 0 if n> 2, and u(n,n) = j(n-i)!j

if n-3. In [7]I found a met od to calculate an exact

formula for u(n,n+k) for successive k , 1; for e:.arple

17



24u(n,n+1) = (n-3)(n+2)n: (n,-3)

The method can be carried out by a computer (see [3,6]

fo' a similar method), but as -the resulting formula has

3k+3 terms, it is not very informative for substantial k.

For bounded k it does yield an asymptotic formula as n-p o

Here however I develoj the method further so as to

obtain the following theorem.

Theorem 1. 2or all k >2,
b,,(n+3k-2)!(n-3k2+2k-1),6 (3k-l)! u(n,n+k)

:g b.- (n+3k-1 (1.1)

,ihere b1 = 1/12, b2 = 5/48 (1.2)

Bk = s(k-s)bbk-s (k, 2) (1.3)

and

2(k+l)bk+1  (3k+2)(kbk + 3B k ) (k, 2). (1.4)

If 3k -2k+ln, the left-hand inequality in (1.1)

tells us nothing new, since obviously u(n,n+k)> O. ior

smaller k, however, ;,e can immediately deduce the

following theorem.

Theorem 2. If 2-k = o(ni/2 then

u(n,n+k) = bj(n+3k-1'!/(3k-1)j1 + O(k1 2 /n)3,

as n--P ..

18



Ag:ain, if 2<k4(1-E in/3) , *1here F_ is a

positive numLer independent of n, then

log u(n,n+k) = logibk(n+3k-1)'/(3k-1)'3 + 0(1). (1.5)

If k-*c as n-p o , Theorem 2 and (1.5) are again

uninformative unless we can "solve" (1.4) asymptotically.

The solution is as follows.

Theorem 3. As k--

b = a 1 (3/2) (k-1)!f1 + O(k- 1 ) , (1.6)

where a1 = 0.058538...

19sing the :ell-.:nown approximation to the

factorial of a large number (Lemma 1 oz LS1, since

t! = rF(t+)), we obtain the following two results from

Theorems 2 and 3 and (1.5).

Theorem 4. If k-4- as n--4o but k = o(n1/2 ),then

u(n,n+k) = + 2(k - ) + 0(k2 /n))

where a2 = aij(61r) = 0.25415...

Theorem 5. If k-->oc as n-> , but k<(1-i) l(n/'3),

where E is a positive number indeDendent of n, t-__en

log u(n,n+k) = (n+3k---)log n - k log (18k 2 ) - n + 2k + 0(0).

19
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%.s .:e indicate in f4, we ca;. obtain a closer

approximation to b- tihan in (1.6) and so irmprove the

error term 0(x - 1) in Theorem 4 at the cost of a little

uomplication. There remains the problem of finding an

asymptotic approximation to u(n,n+k) when k/n1/2--->CO

and /-)--- . This seei~is difficult and I have no ideas

towards a solution.

We have now to prove Theorems 1 and .

20



2. Fundamental lem'as

'e\rite

S ( = 4 z* u(n,n+k' n /n!,

the exponential gen rating function of u(n,n+k). (The

po.ier series converges when I A < 1, but we do not need

this and in fact treat U as a formal series.) Dashes

denote differentiation with respect to X. -e write

= 1-X and, for shortness, Ak = ' + kUk"

Lemma 1. -or all k, 2, we have

27 k+1 = Jk' (2.1)

where

- ~6-2 2[u + -2u 1 + (q - 1+1)( -k+k-1)2

+2X -  
k + TE_ 1 ) (2.2)

and - "3 U (>2) TI = 0.-- A U S__ k-

Lemma 1 is immediate if, in f73, we subs Atute

from (4) in (5), equate coefficients of Yk+1 and divide

through by 9 . Lemma 1 can be proved by a direct

combinatorial argument, but this is inevitably longer.

In L77 we sho;-ed that Uk can be expressed as a

finite sum of powers of q , mainly negative. 2or example,

12U1 = 0-3 - 2o- 2 - 2 -1 + 8 - 7 + 242 (2.;)

and

48U,, 5 50 6- 14qt-'+ 7-;'4 800- - 3o - + 207'- 19 + 2016- 6
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-o'o k 1, e have
U b - c - 3k+ + ut (2.5)

where we now tal'e (2.5) as t ie definitio o uhe
sequences IbkI and fc" and have to prove (1.2) anu

(1 .4).

lem_ a 2. The sequence jbi. defined b (2.5)

satisfies (1.2) and (1.4). Also

c, = ('3k+)kb/(3k-1). (2.6)

iVrom (2.3) and (2.4) we see t at (1.2) is true

an: that (2.6) is true for k = 1 and k = 2. -;e

substitute from (2.5) in (2.1) and equate the 
coefficients

of 46-k After trivial calculations, in which we 
use

tlhe fact that, for any sequence fiti'we have

k-I k-I

t-: 0/,C '_ 1k-t i 1o 27

t:~ 4-r I - -

w? obtain (1.4). Again, if we equate The coefficients

of 0-3k-3 and use (1.4) and (2.7), we obzain

= 6(k+1)bk+l + (3:+1)kb + (3::-)(3k+1)ck

+ 6(3k+1)z (k's)(381)bk.scs (2.8)

iTow (1.2), (1.4) and (2.8) to-,ether fix the value
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of c,,, for all k)-1. Je kno,,! that (2.6) is true for

k = I an-u k = 2. If we substitute from (2.6 in (2. -,

the latter reduces to (1.4). Hence (2.6) is true for

all k > 1 .

I:

F -- F(;) = r(n)Xr/n ' ,

-;e write L2,= f(n). If [F3, 0 for all n>O, we s-iy

that O. Aimilarly F I > F2 means t'at C7I~n L2n for

all n:O. 3ince we treat all power ceries in X as formal

-o-rer s::ries and never consider the value of P for a

partici:.lar value of %, no coafusion arises from the

notation. Theorem 1 follows from Lena 2 and the

following lemma, which ... e h,.ve still to jrove.

i emma 3. ',Ie have

b,96-3 - c(0 + 1 uI < bl - 3  (2.9)

and

b -  -4 ck -3A+l Uk i_ bq6- 31Z (': >2). (2.10)
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3. Proof o:.' Lemma 3.

(2.9) -ollows trivially from (2.3). To deduce

(2.10) for k = 2 from (2.4), it i.- enou :h to show that

and

which .re also trivial.

To prove Lemmna 3 by incuction on k, w Pave now

only to prove the _ollowing le-mma.

em.la 4. if (2.10) iz true for 2-k j, v;here

j>2, Iten (2.10) i- tru2. for k = j+1.

/e ;rite D = d/d and romar; first t at the

operator :D + k, a-;plied to any forial pow ;er zeries,

multiplies thle joefficient of :,: by n+k. If k >1, it

follows that XD + k is a bipositive operazor, i.e.

F > 0 4-- (xD+k)F 0

for any formal power series 2. Similarly

- F2  = (X:+k)F1  (:,D+)F 2 " (3.1)

It ow

k 9= D -1 (1+2i) (3.2)
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and so, by (3.1), to prove lemima 4, it is enou h to

s:,o-J t at

21t < J'I$2+ q

follows from t:e hypoth-.esis o -f Lcmma 4, where

- 3b~~l~ -(t:+i),O + (2k-1)c,'q6 3 1-+1 . (3.4)

Ile now aLsu.me the h.,.Tplotesis. 2-,or lt k< j, we have

b~--96 -. 3:-i +1)'b.-5A ~ ~ - 1< k SO ,T~ .3
and, by (3.1) and (3.2),

Hence A

2~7~6~(12h)~~ 3 ~sL:-S)(s+1b

3(341+2)B k (1 + 21_)3

by (2.7).

.Ie have th'-en u where

20= j2 -"[3(3j+l)lb1 + 3(3j-2 )X2 (j....)b
+(l+ 0 )(1 +2A')(jb . + (-'bo)

+ 3XO -3 -(1-42X)J(3j+2)B + (3j-l)B- 1 0

and B 1 = 0. To prove th.:c right-hand irzaquality in (33)

it is enou~h to show that
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,ut, if we use (1.3) and rearran:-e, we see tat 3.6)

is eauivalent to

(J+l)bi+ I + i2 jbj + K3(j-1)bj_.1  0,

wh ere

K1 = 2(1+2X)6,-3j-3> 0,

K2 = X(3 j+X) -3j- 3 + 4X3 - 3 j -2 >, O

K3 = (3j_2)Xp-3J(1.3X,3x
2 ) + X6- J+l(1+2X) >, o,

and the inequality follows.

,o .rove the left-hand inequality in (3.3), we

re:!uire the following minor lei.ra.

Lemma 5. if F, (1 0 i< 6) arepower series such that

P. ,0 and

F1  F- 3  F4 > 5-F

t-en
FI FF F -F _1 - (3.7)

1 4 2 5 3 5 ~2'6*

If x1 ,...,x 6 are non-ne -ative n>uabers and if

x1-2 - and x4 )x 5-x6,then

XX 4 x 2 x 5 _ xx 5 -x2x 6. (3.8)

'Je may now ut

Xi= (Fi (1 i_3), xi = n1s  (4-<i4 6)

by the hypothesis of Lemma 5. Summing eaci> side of (3..:)

fro o'm s = 0 to s = n, ,.,e find t'at

&iF~l ~ - 3F - 2F6 1

for all nkO, that is (3.7).
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By the hypothesis of Lerula 4, for 2!k- j, we have

LT . -k _ 3k+1, kkb,- 3 0 - 3 "-  - (3k+1)o -3k-

U' 3'K(3k+1)b 3k-2 - k0-3k-i(

U,3 b (3. 1)

since

c- k(3k+l)bk/(3k-1) < (3k+1)bk

b- ( 2.6 ). '-,-ain

(0--3

U1* b1 - 2 -  _ 20-1), >3bI( -2

",ich is (3.10) for k = 1, and
Ud 4b1(3XO-5 -o-3).

2nce, if 2;5 k4 j-1, by T emma 5,

U ( 3 k + 1 )k (  ' -3j-3 (j+)-32, (3.11)
z:' _k1C ,j-J _j2 3

A -ain, by Lema 5,

U, 7j_l > 12(j-1)blbj_10-j-( 31 - 3jX@ -O 2)t 3- 2-3

.>36(j-1 )blb1 -3 j 3 b (j+ 1 )(A j -2

which is (3.11) with k = 1. Hence,by (3.1)S (..7%,

2T> 9(3j+2)Bj5-3j-1 - (j+I)9 O, (3.12)

Clearly, b; (2.2),

j > X2Ud 2 22 (0 -3+.o ) -1,- 27

and so, b: (3.9),(3.10),(3.12) and (3.5),

J x :L4 - 2jb0 - 3 j-1 ;

27



where

:Jsing (141) and simplifying, ae find that

XK4=6(j+1)b I+ 1 +j i_,a 6 (j 6(j1 )b

5~r and

3 (3j4 1 ~3J (3j-)A-3i1  0

TO -rove that J>.R jpit i3 then enou -:h by (3.4)

to show that

6 -3 j-

? 4 ) 1p + 2

th--at is
j3(j+i)2 b. -(2j+i1 )c co -j-2

1o, Ow.b., (2.6) and (-i
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4. Iroof of Theorem 3: t',le behaviour of Ik"

If w.:e .:rit:3 1 = , 32 = 2/3 and

+ 3 1-kkb (k 1),
we' find t-at (1.2) and (1.4) L7.re equivalent to

k
Sk+1 = (k-J Ss 1.

4Is +1-S

2his is the particular case (b = -i) o- the more ;-eneral

recurrence formula studied in L93. Theorem 2 of U9 gives

us7 Theore,. 3 of the presenu p-aper, computation supplying

-e vulue of al . e can in fact deduce t,-:ta, (_ -)'(k-_]! l-q .,, ,

or

for lar-:e k (or ndeedfurther terms of the asymptotic

expansion).
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Appendix 2

n:rmeration of smiooth labelled graphs

E.ii. iright

fathematics Department, University of Aberdeen

(Submitted to :roc. Roy. Soc. Edinburgh A)

Synopsis

An (n,q) graph is a graph on n labelled i.oints

and q lines without loops or multiple lines. .e -..rite

v(n,q) for the numer of smooth (n,q) graphs, i.e.

connacted grap s without end points, and

V = V(z,Y) = Z v nyq/n! for the exponential

generating function of v(n,q). .e use the Ri dell 'core

and mantle' method to find an explicit form for V (not,

as usual with this method, only a functional equation).

rom this we deduce a partial differential equation

satisfied by V. 4e interpret this equation in purely

coniYnatorial terms. Je write Vk = ; v(n,n+k)Xn/nI and

find a recurrence formula for V for successive k. ,ie

use ti-ese and other results to find an asymptotic

expansion for v(n,q) as n-4o whtnz

(q/n) - log n - lo- lo n--- oO and an
32



asymptotic approximation to v(n,n+k' w:hen O< k =o(n 1 )

and to loir v(n,n+k) when k< (n/3) 1/2 (1-F-).
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1. Introduction

An (nq) 2raph is a 'crap on n labelled points and

q lines without loops or multiple lines. A smooth graph

is a connected graph on 3 or more ioints without end

points. :Je write N = n(n-1) and B(hk) = h'/k!(h-k)'I,

so that B(N,q) is the number of (n,q) graphs. Hence the

exponential generating function (e.S.f.) of this nuber is

R = R(ZY) = 1 + a zn(I+y)N/n!

Again f(n,q) is the number of connected (n,q) gra.hs

2nd v(n,q) the nu~iber of these w.ich are swooth; the

respective e.g.f.s are

, = E f(n,)Znyqi/n!

and

V = V(Z,Y) v(n,q) 4J nn

A result due to Gilbert [4] tells us that

R = e . ( .)

,ie use t ,e "core and mantle" ._ethod Vue to Riddell

E81 and Pord and Uhlenbeck [3] to find a functional

equation satisfied by V. . simple account of this

method is given in L61 pp.10,11, ..here it is used to find
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a functional equation satisfied b. the e.g.f. of

2-connected labelled raphs. It has been .:odilied by

a'ish J9 t) find a more coiti~licated equation satisfied
b:- the e.7-.f. of 3-connected labelled graphs. Unlike the

situation in these applications, however, the functional

equation in the case of smooth uraphs can be solved

to find an explicit form for V. This is because the

.articular auxiliary e.2.f. introduced (that for rooted

trees) hac a sinlule inverse. I shall thus prove the

followinl theorem.

Theorem 1: V = log h(We ',Y) - Z + ZZ2 Y.

'ubsequently I give the various consequences

including asymrtotic expansions of or aturoxinations tc

v(n,q)) w-ich can be deduced from this or found

otherwise. Ahere these can be found by :methods already

published in other applications, I give reference4

to these methods rather than reietitive proofs.
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2. Prool of Uiheorem 1

ie write

G(X) = O nn-lXn/n '  (2.1,

Th- e.g.f. for rooted labelled trees is then g = G(ZY)/Y.

Again the inverse of G(-) is

S= Ge- G. (2.2)
This result is well kno..n (see E77 or L11J for example);

the simplest proof consists of definin,- G az the solution

o- (2.2) w-ich vanishes with X and using Cauchy's theorem

in an obvious way to prove (2.1). ie remark that tlhe

series in (2.1) conver.es for LXJ< e-1 , unlike the

series _or 2 an, V which are formal. it follows -hat

z = ge-gY .  (2.1)

Consider a connected (n,q) g-raph wIUCic is not a

tree, so that q,>n. ,Je pluck ->e graph b, re..oving each

ena--coinc ana its adjacent line, continuing the process

until .we are left with a smooth graph. le can restore

the original graph by rootin an appropriate tree ('hich

may be the single point at the root) at each point

on the smoo n ;uph. It follows tl.at
F(Z,Y) = .I(zY)/Y + V(g,Y), (2.4)

where .,r(ZY)/Y ic the e.g.f. for the number of
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(unrooted) labelled trees, so t' .at

0or nul (8) MC X / 2
21ormulai (8 fE 1Fives us .11 = -Gso that

d 1 (ZY) " Y -

Hence, by (2.11) -An (2.4), -we have

F(ge-gy Y) = g - g 2 Y + V(g,Y).

Since Z has now disappeared, we may replace g by Z

and we have

V(,)= F(Ze- ~Y ,y)

Theorem 1 follows by (1.1).
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3. lartial differential equ:ation satisfied by V.

.e ,.rite

S= zne-nZY(l+Y) N/(n-j) I,

so that

so = R(Ze-ZYY) = exp(V+ z - Z-z2 Y)

by Theor2m 1. Differentiating partially with respect

to Z (twice) and with respect to Y, we have

ZIS(V + I - ZY) = SI(1-ZY),

2 VZZ - Y + (V y 2  = -zy 2 - 2+ 2(1-)

Z ~ ~ ~ ~~Z +'LZ + (z'I+ 1 ''
(Vy -- 2 )S0 = -ZS 1 + S2 (1+y).

Eliminating 3O, SI and S2 , .e have the following

theorem.

Theorem 2. The partial differential equation

satisfied by V is

2(1-Zy)(I+Y)Vy =

= Z2(1-ZY)(Vzz+V2) + Z3y2(3-2ZY)VZ + Z3y2 (I-ZY) (3.1)
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4. Direct combinatorial proof of Theorem 2

It is of some interest to give a direct

cor,binatorial interpretation or proof of Theorem 2.

To do so, ..e -arite (3.1) in the form

Vy = Q1 + Q2 + Q3 + 14 + Q5 , (4.1)

where

Q1 = .z3y2 (1-zy)-1 , Q2 -zvZ(1-zY)_ 1L(1-ZY)-2 -1-2ZY3,

Qj =Z 2 V2 ( zY)-2 - 2
=y 9 ' e -2 2 =, - Y Vy ,

1-172 VZ -

ie take the set of' all smzoth (n,q+1) graphs

in eac of .-. hich one line is chosen as s-ecial. Since

tis ci.oice can be '-lade in q+1 .,ays in each graph, ,.--

have J) - (q+])v(n,q+1). 'e separate the set

into five mutually exclusive sub sets OI (i 6 i- 5).

The Cet J9, contains all the members of 0 in which

no point is of degree greater than 2, i.e. every graph

wJhich consists of a single circuit. Jach of th.le

remaining members of 63 has at least one point of

degree greater than 2. It follo,,,s that, in each of

these graphs, the srecial line either belongs to a

suspended circuit (i.e. a circuit all of whose points
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except one are of de ree 2) or to a suspended path

(i.e. a path of length one or more, all of whose internal

points, if any, are of degree 2 anL each of w.,ose

different end-points is of degree greater than 2).

If the special line belongs to a suspended circuit,

we put the iraph in sub-set 632 . If the special line

belongs to a suspended path and if its removzavl

disconnects the graph, we put the --raph in set 430

In each of the remaining graphs, the removal of the

special line leaves the graph connected; if the

suspended patL is of lengt'q, i.e. consists of the

special line alone, we put the graph in sub-set 4t.

if not, in sub-set ,

i4ow consJidrthri collection V, of (n,q) graphs

fori:.ed b- removing the special line from each of

tue ,.raphs in 63 . (A collection, not a set, since

in general some lines will occur wore than once).

Then five sub-collections (1- ik 5) are formed in

the same way from the sub-sets ql. W3 have

IVIe I = 11 = (q+1)v(n,q+1)

and so thie e.g.f. of is
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The fijure s' ows a typical m-mber of each of the

lei The sraded areas represent s:;.oth sb-:raphs an4

the broken line the "removed" line. The grafhs in l
are sinple -:aths with n points (n, 3) and q = n-1

lines; hence "'= 5(n!) and th,. e.,g.f. of is
-n.yn-1 = Z3y2 (i-ZY)- l =

The raphs in are connected an(- >,ve all their

po.ints of de.-ree not les:2 than 2; i.e. they are s1,ooth

(n,q) graphs. Xach such graph can be obtained by the

removal of any one of :i-q lines AB, each from an

appropriate (n,q+1) graph; hence (N-q)v(nq)
2.

an-L the e.g.f. of 1e1is -,zIz VY 4
The graphs in I ] consist of a smooth graph iThe _-rals i -zwith

two of its~joined by a broken suspended path of oriiginal

length greater than one. The e.g.f. of the ni,%ber of

smooth graphs with two distinguished points is ' 2Vzz.

The broken suspended path has its two end points

unlabelled for counting purposes and one line missing

the n'umber of sucn pa,-is is (n+1)!,where n 1,and the

corresrondine e.g.f. is

(n+l)ZnYn - (-y) - 2  1.
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-ence the e.g.f. of IO/is 5', by the i:.ultiplication

property of e..;,.f.s (see L61).

ach graph in consists of t,.l.o smooth sub--gra',s

each with; a distinguished point (A.B in the figure) anc.'

a broken suspended pathn, of lencrth I or more, each of

whose end-points are, 'or counting purposes, unlabelled.

The e.8.f. of the niumber of smooth -raphs each dit-, a

distin~,uishead point is ZV., anci the e.g.f. of the broken

suspended path is (n+1i),,yn (1-ZyF 2. The e.c.f.

of is the~refore Qthe ~-occurring since othIerwise

each graph of eis counfted twdice.

-ach graphi in V-.consists o-;- a smooth ":raph

with a distin-:'uished la:belled Joint C, a s-spended

path CD (in -,,Iich C is unlabelled, all other points are

labelled ana C and D may coincide) and a broken

suspended circuit in which' D is unlabelled. The

corresponding e.g.f.s are ZVZ, (i-ZY)_1 and

:(n+l1 Zflyn = jf6i-Zy )2 _ 1 - 2ZY?

respectively. '-ence the e.g.-.f. of is 2 his

completes the direct. combinatorial proof of (3.1) in

the form (4.1).
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5. .3parzely-eu ged S-ootf graphs

If ve put X = ZY and

VP= i v(n,n+k)X"/n,

we have V - VkYk. Jubstituing in (3.1) and
kto k+1

equating coefficients of Y + we find that

2(1- )3 (XV{+1 + (k+1)V+ 1)

SA2 (1-A)V" - (2-6X+3X2 )xV - 2(1- ) kVkkk
+ X 2(1-X) L V)VI (5.1)4=0 h k.--h'

wL-> re dashes d-note differentiation with ress.ect to A.

:ince v(n,n) = z '(n-1)!j, we have

V0 = jX n/n = -iog (i-x) + X + Ix9.

,ith This, %re coin use the obvious inte-ration of (5.1)

to obtain a forujula for Vk+1 in terms of an integr 1

involving Vh (0$ h5 k), i.e. a recurrence formula

satisfied by Vk for succez:sive k. hTowever in L12] I

describe an alternative method of determining V. as a

finite sum of powers of 9 = 1-X, viz.

V= b - - c.b-3k+l + s s  (I>1) (5.2)
Vk =bkT - PI. L~ c1 5s

5  C - (52
S=-)ht2.

where th c Ks are those given in Theorem 4 of L11l

and bk -- C,_3 ck - -Ok,1-3k. These can be calcilated

by computer b:,' the methods described in L5] and L11) and,

as shown in L131, 1k = 3kZ-k(O-IO dA where dk is

the sequence describeL in ..heort.: 5 b,_±cw.
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6. Asymptotic approximations to v(n,q)

de surpose first that

tk =.(q/n) - -L log n - log log n -4 c (6.1)

as n--- . Then 3rdos and Renyi proven [2] that t-e

proportion of (n,q) graphs in which the minimum degree

is 2 tends to

D = 1 -exp(-e - 2 c )

and that the proportion in which the mini.;LA aegree is

3 t-nds to 0. .gain th; same authors provef l that,

if (6.1) is true, the proportion of (n,q) graphs which

are connected tends to 1. The following t .eorem is

immediate.

Theorem 3. if (6.1) is true, t.-en the proportion

of (n,q) graphs which are smooth tends -to D as n--- c,

t-at is

v(n,q)/B"(I\,q) ---> D.

Next let us suppose tilat - as n-

ronm Theorem 1, ,we have

- 1 00 n3 i n (i+Y) /nexp(V+Z-.Z Y) = I + n-nZY + /n

.de can then u,;e the method of L1O] to find an asy mptotic

expansion for v(n,q). The worK is cuabro:s in detail,
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but follows t .at of [Ij i. a fairly obvious manner.

;e rite Er = -(n-r)(n-r-1). The result we obtain is

as 'ollows.

I'heorem 4. If tA-- as n--)DO , Then

v(n,q) = (,q- nB(,q)+(n-1)E(i;,q-1)

+ 33(n,2) [i,:2q)+(2n-3)B(N,-)+(ii-2)2BN2q-2)

-B(11,3)fnD(i:3,q)+3(n-2)B 3q-l )+3(n-2,(n-3)i':(N3,q-2)
3 (( - ) +)B(773, - )

+

+ U~<2: 4 ,q-44

.ih sufficient labour this expansion can be

extended to any desire iumber of terms. The result

cn also be found by the use of the Inciusion- xclusion

heorem, but no more easily.
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7. As.,rnptotic a:-proxira'ration to v(n,n+k).

.re can also find an asy:-ptotic approximation to

v(n,n+k',) %i;hen 1k = o(n 1/2. If.e roplace =1-G in

[131 by =1-X, the met-tod is almost 'ord-for-aord

identical with t;,at used in L13] for f(n,n+k). (only thie

coml--aratively trivial L-emma 10 requires some alteration

and 45 of £137 is not required.) .ie deciuce the following

t .eorem.

112,Qhorem 5. If 1 :kk = 0(n ,,then

v(n,n+k) = di( 3/2) ~k-1)1k)/(3~k-0f1+ (k 2 n 1 )]

w: e re

daI = d2 = 5 /36, a,,+ .=' + d d dk-/ (k+ 1) B (i,h) t c2). (7.e

In 11ii] we sho,.;ed thcat d, tenis to a li,-,it d as

1C and (by co:aputing) t.-at d = 0.159155 ...

sin- Ltirlin-'s for-1r-fula, ae finA, a furt-er t-Ieorern.

-ierm6. If k -O s n <= an. k = o(n 1/2)

t -en

v~n~n~ke = (J1e>n~+k[ + (j(k~1  + 0 (k n Ab

where a =d(6-n)2 0.600986....

.e can also prove the folljow.ing.
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Theorem 7. If k-c as n- and k< (n)Z(1-i),

'.ere ia positive nu:-ber independent of k an , n,

then

log v(n,n+k) = (n+3&-i.)log n + 2k-n - k log(18,2 ) + 0(l).

.cknowledgment

The research reported here was supported ty the

Euro-ean Research Office of the United States Army.

49



R~eferences in Appendix 2

l.IP.Erd~s and .A..tenyi, On r;-ndom t>raphs I, Iu-1l. hath.

D)ebrecen 6(1959), 290-297.

2. P.Erd~s and A.R'enyi, On tie strength of

connectedness of a random graph, Acta -iath. Acad. Jci.

Hun ar. 12(1961), 261-20'7.

3. G..'.Pord and G..UhMlenbeclc, Combinatorial

problems in the th-eory of-L ,raphs I, --roc. iTat. 1;ci. U..'.'.

42(1956), 122-128.

4. .. Gilbert, -.],numeration of labelled ziraphs,

Canadian J. :.,ath 861056), 405-411.

5. i..GryA.I.II.Iiu:ray and 1C.A.Younr:-, :ri h

formulae for Tuhe number of con- ected sparsely e . ed -r

graphs, J.Grapjh Th-eoryT 1(1977), 331-534.

.T. irary and ".-,aliier, *jrapr ical imnrzo

(Aca-demic ress, !Ue-i Yor.: 1973), 10-11.

7. .h-urwitz and R.Courant, 2unktionentheorie,

(dpringer, Berlin, 3rd ed. 11,20), 141-142.

8. R.J.Rid- ell, Contributions to th-e theory

of condensatiiJn, Lissertation, U. of i.ic'hilgan,

Ann ,'rbor 19,51.

50



9. T.11...'als'h, Countingr la'b~cled three-connected

and horneoriorphically irreducible two-connectec rapns,

uraiTh '2heory TIieWsetter 7(19W7,)', no. 3,3.

10. 2.,Sr~tlsymptotic enu.:eration of connected

g1raphs, 1roc. Hoy. S'oc. Edinb rgh A68(1970), 2983-30R.

11. E.M.Idright, The number of connected sparsely

edged graphs, J.(Graph Theory 1(1977), 317-330.

12. E.iA.*Jrirrht, 'he number off connected sparZely

edged graphs LI, 'm=oth graphs -__nd blocks, J. Gr aphIn

Thleory 2(197K), 29(_-305.

13. 2.;4_1right, The number of connected sparsely,

ed-ed :rraph,'s !I!, As~jmptotic results, J. Graph Theory

4(1980), 393-407.

51



Apendix 3

The k-connectedness of bipartite graphs

E.M*.'.riFght

(To a7jpear in J. Lorion iath. 3oc..'

Sui:imary

;le consider bipartite graphs on m red points and

n blue points, where m4n, and prove that, for any

fixed k, almost all such graphs (labelled or unlabelled)

are k-connected as n--oo , provided m>C log n, where

C depen s on k. If Tmn is the number o-- such unlabelled

craphs, we show t-lat T ".2mn/(m.n!). If T' IS the tuvier

of such unlabelled Sraphs with the colours removed, then

T J OT, , if m <n and T
1 -n T We deduce that almost

mn nn n

all bipartite graphs on p points in all, whether

labelled or unlabelled, are k-connected and so prove

a conjecture of Harary and Robinson.

The research reported here has been supported in

part by the Euro.ean Research office of the United

'States Army.
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1. Introduction

In a recent paper L5 Harary and Aobinson

conjecture that almost all connected labelled bipartite

graphs are 2-connected. Here I prove a number of results,

of one of which the conjecture is an immeaiate corollary.

Dr. Bollobas has very kindly shown me a paper of his Ll3

which also includes a theorem of which the same

conjecture is an immediate corollary. The overlap

between his paper and this one is however small.

Throughout we take k a fixed positive integer and

write C for a suitable positive number (not always the

same at each occurrence) which may depend on k, but not

on p,m or n. The notation C( ) ando( ) refers to the

passage of p or n to infinity (as t . case may be) and

the constants imr.lied are of type C. 'le say that almost

all graphs of a particular kind have a property if the

proportion which have that property tenas to I as p-400

or as n->oo. Harary and Robinson's conjecture follows

at once from the following theorem.

Theorem 1. Almost all labelled (or unlabelled)

bipartite hs on p iloints are k-connected as p--.o

-e first consider labelled (m,n) graphs, i.e.

labelled bipartite grap:-,s on m red points anu n blue

points, i.e. the red points are labelled rl,..., rm
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and the blue points bl,..., bn . Each red point may

be joined by just one line to each blue point or not so

joined; no two points of the same colour are joined. The

number of labelled (i r,n) graphs is clearly Fmn = 2 n.

Je take m = m(n),< n.

Theorem 2. If m> C log n, almost all labelled (m,n)

graphs are k-connected as n-4 W.

Let Tm be the number of unlabelled bipartite graphs

on m re points and n blue points.

Theorem 3. If m>C log n, then

Tmn = [2mn/(m!n)3 [ 1 + o(1)],

Th orem 4. If m> C log n, almost all bicoloured

unlabelled (m,n) :raphs are k-connected.

Theorem 3 implies that, if m>C log n, almost all

bicoloured (m,n) graphs, labelled or unlabelled, have

only the trivial automorphism. Theorem 4 follows from

Theorems 2 and 3.

lWhat is true if we remove the colours from the

unlabelled graphs? Some of the resulting disconnected

(m,n) graphs may then be isomorphic to one another but,

in view of Theorem 4 (with k=1) there are almost none

of these. If m<n, no two of the connected uncoloured
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graphs are isomorphic to one another, for a connected

bipartite graph can only be bicoloured in one way (a.art

from an interchange of the two colours, impossible here

since the m points are originally coloured red). This

argument fails, of course, if m = n. Let T I be the

number of non-isomorphic uncoloured unlabelled (m,n)

graphs. We have proved the first part of the following

theorem.

Theorem 5. If m >C log n, then
T !  2'n/(m.1n.) (m< n); T 2 -/(n1)2
mn nn

The second part is proved in 4.

There is a sense in which our theorems so far

are "Iveak", since they refer to almost all (;i,n) graphs,

make no reference to the number of lines and do not find

the "threshold" for connectedness in the sense of [31

or the asymptotic numbers of unlabelled (m,n;E) graphs

(. being the number of lines) as in[E,7 for ordinary

graphs. So far as simple connectedness of labelled

bipartite -zraphs is concerned, we have the following

theorem (which I do not prove here).
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Theorem 6. Let m< n,

E= nIm - (m- )e - ( l  n)/m (1.1)

and m--w and r-- c as n-+ . If f(n-m) log nl/n--)b,

then the proportion of labelled (m,n:E) grap s which

are connected tends to exp-e-c(l+e-b)3. if

n-m) log nl/n--D , then this prooprtion tends to

exp(-e-C).

Professors hlee and Larman and I hope to publish

the proof of Tkleoreni 6 in a joint paper. This proof is

distinctly more complicated than that of Theorem 2 of the

present paper. it is interesting to note that, if m/log n

is bounded above as n-- co , then E in (1.1) is not o(LnM),

whereas the condition that Z = o(n ) plays an essential

role in (22.

Let a= ol (m,n) be the proportion of labelled

(m,,n) graphs which are connected. oie can deduce from

Theorem 6 or prove directly that, if n2-m-n w as m,n---w

with m4n, then o(m,n)-4e-w  and correspondingly,

if n2 -m--- , then c---> . (Dr. Bollobas tells

ma that he knew t'-is ana that he thinks that he has

seen a published proof.) The re2ult shows that the

condition m >C log n in Theorem 2, while not best

possible, is nearly so.
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There see!s to be no serious obstacle to extending

the methods of [43 on k-connectedness to labelled

bipartite (m,n;Z) graphs, though the extra variable m

certainly introduces complication. The extension of

L6,7) (and especially [7J, the methods of whic'h are

themselves unattractively complicated) to t?;e bipartite

case may be more troublesome and so far I have only

partial results. Thus the point of the present paper is

that, while the theorems are probably not best possible,

the roofs are relatively simple and strai.Ihtforward.

In what follo-,.s ,..,e write B(h,k) = h/l(h-k)

57



2. Iroof of Theorem 2

If an (m,n) graph is not k-connected, there are

&-l points, say r red and s blue, where r+s = k-i,

such that, if these points and all lines adjacent to them

are removed, we are left with an (x,y) graph and an

(m-r-x,n-s-y) graph, unconnected to one another. There

are therefore A = x(n-s-y) + y(m-r-x) lines which cannot

occur in the original graph. The number of such original

labelled graphs is th-:erefore at most

B(m,r)B(n,s) ,B(iix)B(Ny)2 (2.1)

where 11 denotes summation over all x,y such that

O x ii = m-r, 04 y4 N = n-S, 14 x+y: M+N-1-. .e can

clearly choose x& I M, but not then choose yI a •

However, if y> 1N, write y'= N-y4 N; we h ,ve

(x,y) = x(N-y) + y(iri-x) = xN + y(il-2x)

xN + y' (-2x) = (x,y').

Hence the number (2.1) is at most

2B(m,r)B(n,s) , B(4,x)B(N,y)2mn
-A(x 'y)

-.here ZO denotes summation over all x,y such that

O!Cx , O y <N, 1<x+y. The proportion of such graphs

among all labelled (m,n) graphs is therefore at most

4AS2B(m,r)B(n,s) B(,i,x)B(N,y)2 -11(x 'y ) . Ce(x'Y)i(x'y'),
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where

A~xy) (ix+ .y) log 2 -(r+x)log in - (s+-;T)lo!; n

C. (m - C log, n)(x+y),

proviCied m > C lo n. K, ence -ars o~i) and T2heorem 2

follows.

59



3. Proof of Theorem 3: the unlabelled case

By the so-calLea ksee [7j) Burnsiae Lemma we have

mnTmn Fmn + F(", ), (2.1

where F(er) is the number of labelled (mn) graphs

invariant und.er the permutation of -the labels r1 ,... ,r m

and the permutation I- of the labels b1 ,...,bn and

denotes summation over all > and all j- , except the

pair in which - - I, the identity.

The permutation P can be expressed uniquely as a

product of disjoint cycles, of which pj are of length j;

similarly q- is a product of disjoint cycles, of which

qj are of length j. de have

m - -$ jp n -- n Jqj.

Let WT be the corresponding permutation of the lines

joining the ri3 to the N3 and Pj the number of cycles

in 71 of length j. Then

rnn - .
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Consider those in which just a of the ri are
ia

changed, so that p1 = m-a. There are at most B(m,a)a'< m
a

such p . Similarly there are at most n permutations o-

in which q= = n-b. For suc. r and 0-, we have

P, = (m-a)(n-b).

The number of labclled (m,n) gra.phs invariant under any

such~ pair P o- is 2 4 ,since the j lines affected by

an, j-cycle of -1 are either all present or all absent. Now

+ 1 + j 1, =(I +rnn)

= mn - tan - bm + iab.

From (3.1), .-e have
, = m n  PY

mn.T mn=2 + J, J 2 (3.2)

de remark that a = 0 or a>2 and b - 0 or b>,2. Then
mn ma2  

n + nb 2
- bm + manb2 -(a±+bm-ab)

J2_ m'2'_ an

!Low, if 2_ a-m and 2!b5 n,

an + bm - ab (an +bm)

and so Theorem 3 follows if we can show that

Sma2- a n = o(1), nb2
" b m = o(1).

These are clearly true if

m log 2 -4 log ri ->o (3.3)

as n-)o , i.e. if m>C log n for an appropriate C.
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4. Proof of the second pLrt of Theorem 5

As before, ve may disregard the disconnected graphs.

Consider a connected bicolouredllabelled (n,ny graph G1 .

Recolour the red points blue and the original blue points

red and so obtain a graph G2 . If G and G are not

isomorphic to one another (i.e. isomorphic red to red

and blue to blue), we say that they are a reciprocal pair.

If they are isomorphic to one another in this sense, we

say t.at G is self-reciprocal. If then we remove the

colours from every connected unlabelled (n,n) graph,

we have to discard one of every pair of reciprocal graphs to

obtain the co~izct-d.n,'-mbers of t: e collection enumerated

by Tn. The following lemma suffices to prove that

nn= nnf1 + o(1)3, from which the second part

of Theorem 5 follows at once.

Lemma. If S is the set of self-recjprocal bicoloured

labelled (n,n) rahs then S = 
n  "

Consider the self-reciprocal bicoloured labelled

(n,n) graph G. It has an automorphism ii (red to blue,

blue to red) which maps rl,...,rn on to -r1(bl,...,bn),

where ' is a permutation of the suffixes 1,2,...,n,

and bl,...,bn on to 12 (rl,...,rn). Hence 1j(b,...,b n)

is mapped on to - 2
7

1 (r ,...,rn). Two cases arise. If

2 is not the identity, we repeat thz_ mapping 14.
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Then, under the mapping i2, r1 ,...,rn maps on to

-r 1(r,...,rn) and b ,...,bn on to 1 -7-2 (b1,.*..bn),

Hence the -raph G is invariant under the permutation

P= '72 TI of the suffixes of the ri and r-= I-r2 of

the suffixes of the bi. Thus G is invariant under

the non-identity permutation of the labels of the

red points and the permutation q- (also non-identity)

of the label- of the blue points. It is therefore one

of the bicoloured labelled (n,n) graphs counted (perhaps

more than once) in the sum J of (3.2), which is o(2n%).

Now consider those G fr which '2 7- = 1, These have

a red on blue, blue on red automorphism in which ri maps

onto b~4 ) and b~ ( on to ri . There are n! poscible choices

o: --I1. Hence there are at most n!D graphs G of this type,

ldhere D is thc number of graphs G in which ri map:s onto

bi and bi onto ri for every i. in such a graph, ri is

(or is not) joined to i and the line rib j is present

if and only if the line bir. is present. Hence there is

a (1,1) correspondence between these G and the graphs

(not necessarily bipartite) on n points with a possible

loop at each point. It follows that D = 2 n(n+1)

that n!D = o(2 n ). The lemma is immediate.
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5. Proof oi Theorn 1

Let 2 be -the nmnber of bipartite uncolourad graphs
p

on p labelled points and, as before, 2W = 2mn the number

o: bipartite graphs on m red points labelled

and n blue pcints labelled b.1 ,... , bn . ;e remove the

r striccion that m47. Clearly

-_ B(p,m).i

if fp anJ f mn are the corresponding n-,imbers of labelled

--connected graphs, we have

fmn iF1 + 0(1))

by Theorem 2, provided min (,,n) > C log max (m,n". But

~~~r, -m .

.OC2(I+Co = p],i[)pJ ) = o(F)

and so we have

f = 41 3(p,am fm,Im = FPf1 + 0(1)3

ThiL is the labelled case of Theorem 1.
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if ' is t -e number of unlabelled~ bicoloured

bipartite raphs on p !.oints, we 1h-ave

f, -1

m ,p-in

and we can prove that almost ail the I rph r

k-connected as above. Similarly, with minor variations,

for unlabelled uncoloured bipartite graphs.
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